H(t)=-16t^2+192+112

Simple and best practice solution for H(t)=-16t^2+192+112 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+192+112 equation:



(H)=-16H^2+192+112
We move all terms to the left:
(H)-(-16H^2+192+112)=0
We get rid of parentheses
16H^2+H-192-112=0
We add all the numbers together, and all the variables
16H^2+H-304=0
a = 16; b = 1; c = -304;
Δ = b2-4ac
Δ = 12-4·16·(-304)
Δ = 19457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{19457}}{2*16}=\frac{-1-\sqrt{19457}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{19457}}{2*16}=\frac{-1+\sqrt{19457}}{32} $

See similar equations:

| 13x^2-419x+2850=0 | | H(t)=-16t^2+112+192 | | 1/3(x-5)=1/3x-10/6 | | (a+10)+2a+a=180 | | 7(6-8k)=-350 | | 17.95+0.83x=255.33 | | -48=-1.2m | | 7(-b+7)+1=106 | | 7(2-4n)=182 | | 5x-3(x-4)=-5+4+1 | | -199+13x=1x+125 | | 4(3x−5)=30−4(x−4) | | 2x+15=x-10 | | 5(r-1)-r=2r-(2r+1) | | A+(a+10)+2a=180 | | 5x-8=91-6x | | 6-h×3=12 | | 10x+2=11x-7 | | (x-2)+5=2(x-2)+2 | | 450=2x+x | | -65-3x=67-9x | | 12a+a-18a+15a+-16=14 | | 7t=10/20 | | 3b=8/12 | | 16x+4=12x+8 | | 13n-12n+3=15 | | -1=r/3-4 | | 8x-128=-7x+142 | | 2(x-1)/3=2+x | | −4(5−x)=45(x+3) | | 9(2k=3)+2=11(k-5) | | 32=4(2+6x)-6(-5x+5) |

Equations solver categories